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THE 5-MODULAR REPRESENTATIONS 
OF THE TITS SIMPLE GROUP IN THE PRINCIPAL BLOCK 

HOLGER W. GOLLAN 

ABSTRACT. In this paper we show how to construct the 5-modular absolutely 
irreducible representations of the Tits simple group in the principal block, which 
is the only block of positive defect. Starting with the smallest nontrivial ones, 
all the others except one pair are obtained as constituents of tensor products of 
dimension at most 729. The last two we get from a permutation representation 
of degree 1600. We give an exact description of the construction of the first one 
of degree 26 by extending its restrictions to several subgroups, a method first 
used in the existence proof of the Janko group J4 . Using the explicit matrices 
obtained from the above constructions, we work out the Green correspondents 
and sources of all the representations and state their socle series. 

0. INTRODUCTION 

One aim of modular representation theory is the construction of the p- 
modular absolutely irreducible representations of finite groups G, where p is 
a prime dividing the group order IGI. Having done this, invariants of these 
representations like vertices, Green correspondents, and sources may be com- 
puted to get more information about them. This paper deals with the 5-modular 
representations of the Tits simple group 2F4(2)' in the principal block. This 
is in some sense the only interesting block for this problem in 2F4(2)', since 
all the other blocks are blocks of defect 0. The following tables show some 
small permutation representations and tensor products of 2F4(2)' written as 
sums of their 5-modular constituents. To calculate these tables, we have used 
the decomposition matrix of 2F4(2)' mod 5, which can be found in [4]. 

We have indicated in bold type how we construct the representations in this 
paper. Thus, one has to handle a tensor product of dimension 27 * 78 = 2106 
to get the smallest representation of degree 26 out of permutation modules and 
tensor products. But on the other hand, once having constructed 26, all the other 
representations, except the pair (460, 460'), can be constructed by looking at 
tensor products of maximal dimension 729, and the last pair can be found in a 
permutation representation of degree 1600. So this will be the way we construct 
the 5-modular absolutely irreducible representations of 2F4(2)' in the principal 
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TABLE 1 

Some small permutation modules 

1600 = 4* 1+ 3* (27 + 27*) + 78 + 2* (109 + 109') 

+ 460 + 460' 

1755=2* 1 +27+27*+2*78+ 109+ 109' 

+ projectives 

2304 = 4* 1+ 4* (27 + 27*) + 78 + 2* (109 + 109') 

+ 460 * 460' + projectives 

TABLE 2 
Some small tensor products 

26 26 = 1 + 27 + 27* + 78 + 109 + 109' + projectives 
= 26* 26* 

26 0 26* = 1 + projectives 

26027 = 109+593 =26* 27* 

26 0 27* = 109 /+ 593 = 26* 0 27 

27027= 1 +27+2*27*+78+ 109+ 109'+351 

27*027* = 1 +2*27+27*+78+ 109+ 109'+351* 

27 0 27* = 1 + 78 + projectives 

27078=26+26*+2*27+27*+351 +2*351*+460+460' 

block. We start with the smallest nontrivial representation of degree 26 in ?1, 
constructing it from its restrictions to several subgroups of 2F4(2)'. To do this, 
we use the same method as Benson, Conway, Norton, Parker, and Thackray 
in the existence proof of the Janko group J4 [1], and we will give a detailed 
description of this way of constructing modular representations. Another de- 
scription of this method can be found in a recent paper by Parker and Wilson 
[7], where they describe the construction of the 111-dimensional representation 
of the Lyons group Ly over GF(5). In ?2 we try to get our explicit matrices 
for 2F4(2)' compatible with a description of 2F4(2)' as a permutation group 
on 1600 letters. On the one hand, we need this for later calculations to work 
out the restrictions of representations to some subgroups; on the other hand, 
we need a permutation representation of 2F4(2)' of degree 1600 to construct 
the last pair of representations we are interested in; all the others will follow 
from the one of degree 26 by building tensor products. The constructions of all 
these representations will be described in ?3. Section 4 deals with the compu- 
tation of the Green correspondents and sources of all the 5-modular absolutely 
irreducible representations of 2F4(2)' in the principal block. We will use the 
computer algebra system CAYLEY [2] and programs by Schneider [9], first to 
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construct the Green correspondents and sources, and second to work out their 
socle series. The reader is referred to the book of Landrock [5] and to the paper 
by Schneider [9] for the necessary background from representation theory and a 
detailed description of the algorithms of ?4. As usual, modules will be denoted 
by their dimensions, and for a given module M we write M* for its dual and 
M' for its image under the outer automorphism of 2F4(2)' . If there are sev- 
eral modules of the same dimension, we may also use subscripts to distinguish 
between them. 

1. THE 26-DIMENSIONAL REPRESENTATIONS 

In this section we want to construct the representation of degree 26, and we 
will do this with the method used in the construction of J4 [ 1]. The idea is first 
to restrict the desired representation to some subgroups of the given group, and 
then to try to extend these restrictions to a representation of the whole group. In 
comparison to the existence proof of J4, we will use this method for semisimple 
modules, where some aspects of the construction are easier; unfortunately, we 
will end up with a large number of cases to check. Everything is based on the 
following 

Theorem 1.1. Let G be a finite group, K a finite field, and U1 = (x, .. ,t) 

U2 = (y1, ..., ym) two subgroups of G such that G = (Ul, U2). Define V = 
U1 n U2 and let D1: U1 -+ GLn(K), D2: U2 -+ GLnf(K) be representations of 
U1, U2, respectively, such that DI 4 = D2 4V. Furthermore, let T1,..., Tk be 
a full set of representatives for the double cosets 

CGLn(K) (D2)\CGLn(K) (D2 ltV)/CGLn(K) (DI). 

If D1 and D2 can be extended to a representation D of G, i.e., if there exists 
a representation D: G -+ GL (K) such that D 1u D1 and D D 

then there exists T E {T1, ..., Tk} with D (D1, DrT), i.e., the matrices 

DI(x,), ...,D(xt), T ID2(yI)T,..., T ID2(Ym)T define the extension D 
for the group G. 

Proof. Suppose that D1 and D2 can be extended to a representation D of G. 
By conjugation with a suitable matrix we can assume that D tu = D1. Since 

D t _ D2, there exists a matrix T E GLn(K) such that T 1D2T = D 
2 '. It 

follows that 
D2 tv= DI1v= D lv= T D2T l4, 

so T E CGL (K)(D2 v). Now choose an arbitrary S E CGLn(K)(D2). Then ST 
has the same properties as T, so it is enough to check a right transversal of 

CGLn(K)(D2 4). On the other hand, it is clear that for every S E CGLn(K)(Dl) 
the matrix TS will define a representation equivalent to D, since 

(D1, D2 ) = 
(DI, D2TS) = S'(D, D)S = Ds D 

so it is in fact enough to check representatives for the double cosets. 5 
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Remarks 1.2. (1) The condition D1 4v = D2 4V is assumed here for simplicity, 
but whenever D1 l v and D2 lv are isomorphic representations, then there 
exists a matrix M such that D1 4 = M ID2M 4v. This M, however, may 
be hard to find in special cases, but when the restrictions are semisimple mod- 
ules, then everything works fine and the representatives T1,..., Tk can be 
constructed without any difficulties, as we will see later. 

(2) By checking all representatives T1, ... , Tk, one may prove that the rep- 
resentations D1 and D2 cannot be extended to a representation D for a given 
group G. 

Before applying the theorem to construct the 26-dimensional representations 
of 2F4(2)', let us first recall some facts about 2F4(2)', which can be found in 
[10]. 

Lemma 1.3. The group 2F4(2)' has two conjugacy classes of maximal subgroups 
isomorphic to L3(3): 2. Let U1 be one such subgroup, and let V be the Sylow-3- 
normalizer of U1 . Then there exists an outer automorphism a of 2F4(2)' with 
the following properties: 

(a) U2=cr(U1) is not conjugate to U1 in 2F4(2)'. 
(b) a is an outer automorphism of Va- 31+2: D8. 

Since V is maximal in U1, we have V = U1 flU2. 

The notation of Lemma 1.3 indicates how we want to use Theorem 1.1 for 
the construction of the 26-dimensional representations of 2F4(2)'. There is 
good reason for this choice of U1, U2, and V, because the restriction of 26 to 
L3(3): 2 stays irreducible and the order of L3(3): 2 is prime to 5; therefore, the 
further restriction of 26 to V is semisimple, which makes it easier to construct 
its centralizer. 

L3(3) is known as the automorphism group of the projective plane of order 
3, and adding the duality automorphism which interchanges points and lines, 
we get L3(3): 2 as a permutation group on 26 letters (13 points and 13 lines). 
The permutations 

a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) 
(14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26), 

b = (1, 3, 13) (2, 7, 6) (4, 8, 11)(14, 20, 23) (15, 17, 18) (16, 25, 24), 
c = (1, 25) (2, 24) (3, 23) (4, 22) (5, 21) (6, 20) (7, 19) 

(8, 18) (9, 17) (10, 16) (11, 15) (12, 14) (13, 26) 

generate L3 (3): 2 with (a, b) = L3 (3). A Sylow-3-normalizer of L3 (3): 2 is, 
e.g., given by the elements 

7 7 a9 9 4 1 
caba7 caba c 2 a9 x = bb bc , y = ((ab) )a 

This gives U1 = (a, b, c), V = (x, y), and U2 = a(U1) = (a(a), v(b), v(c)), 
and since a is an automorphism of V, we know that v(x), v(y) E (x, y) . To 



THE 5-MODULAR REPRESENTATIONS OF THE TITS SIMPLE GROUP 373 

apply the theorem, we have to know v(x), v(y) as words in a, b, c. Obvi- 
ously, v(x), v(y) satisfy the same relations as x, y, namely 

6 2 3 -1 -3 -1 2 2 -1 2-1l 
x = y = xyx yx yx y =(x y) xy(xy) x y=1, 

but the pair (a(x), v(y)) is not conjugate to the pair (x, y) in V, because a 
is an outer automorphism of V. Up to conjugacy there is only one such pair 
of elements in V, e.g., 

7 a9 caba7 9 
x/ =cabac b y, y =(c )y. 

1.1. The restrictions to U, U2, and V. By the above choice for Up U2, and 
V we only have to construct the restriction of 26 to L3(3): 2 for the generators 
a, b, and c, and we get the restrictions to U1, U2, and V immediately because 
we can choose the same matrices for U1 and U2 and we know generators for 
V as a subgroup both of U1 and U2. But the restrictions of 26 and 26* to 
L3(3): 2 are irreducible, isomorphic modules, and we use the CAYLEY system 
for the first time in this paper to construct one of them in the following way. 

The centralizer of c in L3(3): 2 has index 234, and this gives a permutation 
representation of L3(3): 2 of this degree. Looking at the Atlas [3], we see that 
our restriction is a composition factor of this module, and using the CAYLEY 
version of the Meat-Axe [6], we get matrices A, B, and C for our elements 
a, b, and c to define D1, the restriction of 26 (and 26*) to U1 = L3(3): 2. But 
we can use the same matrices also to define D2, the restriction of 26 to U2 = 
(a(a), a(b), a(c)) . Furthermore, with the above description of the generating 
pairs (x, y) and (x', y'), we are able to compute matrices X, Y and X', Y', 
to get D1 Iv and D2 4v, respectively. Unfortunately, we have DI lv D2 4V , 
but not equality. So we have to find a transformation matrix M as in Remark 
1.2(1), which means we have to find a matrix M such that 

X=M-IX'M and Y=M' Y'M. 

This can be done using the idea of standard base [6]. Of course, we have to 
transform all generating matrices for D2 with M, which gives D2 D = 

(Am, Bm , Cm). For simplicity, and according to Theorem 1.1, we write D2 
again for this representation of U2. 

1.2. The double coset representatives. As remarked earlier, the restriction of 26 
to V is semisimple; in fact, it decomposes as D2 tv= 41 @ 42 ? 61 ? 62 ? 63, 
a direct sum of five pairwise nonisomorphic, irreducible representations. By 
transforming D2 t V into the corresponding block structure it is an easy exercise 
to write down its centralizer. At this point we have to worry about the field K 
of Theorem 1.1. We are working in characteristic 5, and for the construction 
of D1 and D2, GF(5) was sufficient. But looking at the character table of 

2F4(2)' we see that we have to use GF(25) to construct 26 for the whole 
group. Therefore, we have to choose our double cosets in the centralizer of 
D2 4V over GF(25), an abelian group of order 245. Since DI and D2 are 
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irreducible, their centralizers are just equal to the center of GL26(25), and the 
total number of double coset representatives we have to check is 244 = 331776. 
It should be remarked again, that because of the semisimplicity of D2 t v and 
its block structure we can write down all these representatives in a very easy 
way. 

1.3. The construction of the representations. Since both 26 and 26* restrict to 
the same module for L3(3): 2, we have to find both of them with the help of 
our 244 double coset representatives. So we are looking for two transformation 
matrices T, T2 such that D1 and DT, i = 1, 2, give two representations 1' 2~~~~~~~~~ 
for 2F4(2)' It is hard to prove that some matrices represent a given group, but 
it may be much easier to show that they do not make sense as a representation. 
So we will check all double coset representatives T and for nearly all of them 
we have to prove that D1 and D2 do not give a representation for 2F4(2)'. 
This can be done in the following way: 

(i) For any double coset representative T we choose an element P of 

(DI, Df), e.g., a product of two matrices, one from D1 and one from D . 
(ii) If, for this representative T, (DI, DT) represents 2F4(2)', then the order 

of P is bounded by the orders of the elements of 2F4(2)'; therefore, order(P) 
has to be less than or equal to 16. 

(iii) Choosing a random vector in GF(25)26 and multiplying it with P again 
and again, we have an easy first check for the order of P. 

Although this test seems to be a weak one, it is strong enough to eliminate 
all but two of our 331776 double coset representatives, and we can construct 
the representations 26 and 26* for 2F4(2)' These calculations have been done 
during the author's stay at the Scientific Centre of IBM Germany at Heidelberg. 

More precisely, we have two sets of matrices {A, B, C, D} and {A, B, C, 
D'}, which give the two representations, where {A, B, C} generate the above 
restriction of 26 to L3(3): 2. The matrices A, B, C, and D are given in the 
Appendix. Knowing only the matrices, we have no chance to find a Sylow-5- 
subgroup or a Sylow-5-normalizer of 2F4(2)' in this representation, which is 
necessary for the construction of Green correspondents and sources. So what 
we need is 

(a) 2F4(2)' as a permutation group, 
(b) permutations a', b', c', d' for the matrices A, B, C, D. 
In the next section we will construct such a permutation representation for 

2F4(2)', and we will switch to other generators and matrices for easier calcula- 
tions in Sylow-5-subgroups and Sylow-5-normalizers. 

2. 2F4(2)' AS A PERMUTATION GROUP ON 1600 LETTERS 

To construct 2F4(2)' as a permutation group, we start with the generators 
and relations of Parrott [8]. Using his notation, the following is an easy exercise 
in CAYLEY. 
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Lemma 2.1. The subgroup H = (58' s6r s8(r2r8) s8r r s) has index 1600 in 

2F4(2)', hence H L3 (3):2. 
From the above lemma we get two permutations for L3(3): 2 as a permu- 

tation group on 1600 letters, say xl and x2. On the other hand, from the 
construction in ? 1, we know permutations a, b, c on 26 letters which also gen- 
erate L3(3): 2. Since we know matrices A, B, C for them, we want to find 
them again in (xl, x2) , i.e., we want permutations in (xl, x2) for our matrices 
A, B, C. To get such permutations, we look at the relations for a, b, c, which 
are 

a13 =b3 =c2 =(ac) = (ab-I) = a2cbabc(a lb ) 

a 2(bc) 2ba 2b- a- Ib = (ab) 2(cb'-l)2a- Ib' Ia b 

- ab Ic Ibcl'b 'c la lb' ac lb= 1. 

We use the CAYLEY system first to get these relations, and second to look for 
permutations in (xl, x2) satisfying these relations. Up to conjugacy, there is 
only one such set of permutations {a', b', c'} in (xl, x2), and so we have 
three of the four permutations on 1600 letters we are looking for. (It does not 
matter which L3(3): 2 in 2F4(2)' we take, because there is only one class of 
subgroups of type L3(3): 2 in 2F4(2)' under automorphisms.) 

Having permutations for A, B, and C to generate L3 (3): 2, we only have 
2 to find one more extra element to get F4(2)'. To do this, we first construct a 

matrix Z E (A, B, C, D) with order(Z) = 2, trace(Z) = -1 , because there 
are only 1755 such elements in 2F4(2)'. In our permutation representation of 
2F4(2)' above on 1600 letters we only have to find this class of involutions again. 
(This is done by finding one such involution, e.g., the permutation corresponding 
to the generator r, in Parrott's notation, and conjugating it with a transversal 
of its centralizer in 2F4(2)'.) To find the right permutation for the matrix Z, 
we check some easy relations of it with A, B, and C for all the conjugacy class 
members. Finally, we will end with a fourth permutation z', and the following 
holds: 

Fact. We have four permutations a', b', c', and z' on 1600 letters which gen- 
erate 2F4(2)', and we have corresponding matrices A, B, C, and Z which 
define a 26-dimensional representation of 2F4(2)' over GF(25). 

As remarked at the end of ? 1, we now switch to new generators for 2F4(2)' 
and the corresponding matrices. This is necessary, because we are interested 
in a Sylow-5-subgroup and a Sylow-5-normalizer of 2F4(2)' and we want to 
restrict our representations of 2F4(2)' to these subgroups. If we choose the 
right generators, the restrictions will make no difficulties. So we use CAYLEY 
again to find generators for a Sylow-5-normalizer of 2F4(2)', and we work out 
some products to get permutations u and v with the following properties: 

(a) 2F4(2)' = (u, v, a'u) = (v, a'u). 
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(b) N= (u, v) is a Sylow-5-normalizer of 2F4(2)' 
(c) S = (s = (u 2v) 2, t = (uv 2)2) is the Sylow-5-subgroup of N, hence a 

Sylow-5-subgroup of 2F4(2)'. 

Using the concept of base and strong generating set and programs by Schneider 
[9], we can compute the matrices for u and v in our given representation 
(A, B, C, Z) for 2F4(2)' . So we are able to write down the module 26 for our 
new set of generators of 2F4(2)' 

For the rest of the paper we will view 2F4(2)' as this permutation group on 
1600 letters, generated by the three permutations u, v, and w = a u. In this 
presentation, it is now easy to restrict a given module for 2F4(2)' to a Sylow-5- 
normalizer; just forget about the matrix for w and look only at the matrices for 
u and v. With the above information, it is also merely a problem of matrix 
multiplication to restrict such a module further down to a Sylow-5-subgroup, 
because we know how to write generators for such a subgroup as words in u 
and v. So we can start to work out the other representations of 2F4(2)' in 
the principal block in ?3 and to concentrate on their Green correspondents and 
sources in ?4. 

3. OTHER REPRESENTATIONS OF 2F4(2) 

Once the modules 26 and 26* have been constructed, it is more or less a 
question of computer time to get the other 5-modular irreducible representations 
of 2F4(2)' in the principal block. First, we work out some tensor products 
using the CAYLEY system again. As ordinary characters, the product 26 0 26 
decomposes as 

26 0 26 = x8 + x9 

where we use the Atlas-notation for the ordinary characters of 2F4(2)'. Here, 
X8 is a projective character modulo 5, so we concentrate on x9. With the help 
of the Meat-Axe we get the modules 27, 27*, 78, 109, and 109' as composi- 
tion factors, as can be seen in Table 2. So we have all the 5-modular irreducible 
representations of 2F4(2)' up to dimension 109. It should be remarked that the 
modules 27, 27*, and 78 can be realized over GF(5), and that the decompo- 
sition 

26 0 26 = 325 ? 3510 

is a direct sum of two indecomposable modules. For 325, this follows from its 
projectivity; the fact that 3510 is indecomposable can be seen by looking at 
Green correspondents, and will be proved in Corollary 4.3. 

So we are left with three pairs of modules (351, 351*), (460, 460'), and 
(593, 593'). Two of them can be found by working out tensor products as 
above. Looking at ordinary characters, we have the decompositions 

26X27=x17, 27027=x5+x8+x9. 
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The first product yields the module 593 (in the same way, the product 26 0 27* 
gives the module 593'); in the second product we find the module 351 as a 
composition factor, and so we also get its dual 351*. As a matter of fact, it 
suffices to calculate the skew tensor product 27 A 27 to get the representation 
351. This shows that the modules 351 and 351 * can be realized over GF(5) . 
All the constructions in this section have been worked out using the CAYLEY 
version of the Meat-Axe, the modules 593 and 593' requiring a large amount 
of CPU-time. For the modules 460 and 460', we have to use another approach. 

Since the order of L3(3): 2 is prime to 5, its trivial representation IL3(3):2 over 

a field of characteristic 5 is projective. Inducing it up to 2F4(2)', we get the 
permutation representation of degree 1600 of ?2, which is therefore projective, 
too. Looking at the decomposition matrix of 2F4(2)' [4], we see that this is 
just the projective indecomposable module with the trivial representation in its 
socle, and that the modules 460 and 460' are composition factors of it. But 
a dimension of 1600 seems to be too hard for the current CAYLEY version 
of the Meat-Axe, so we have to use the Assembler version. Routines for the 
arithmetic in GF(25) have been written in the 032 Assembler for the IBM RT 
6150 to work out the composition factors of the above permutation module and 
to get the modules 460 and 460'. This ends the construction of the 5-modular 
absolutely irreducible representations of 2F4(2)' in the principal block, and we 
are ready to look for their Green correspondents and sources in the next section. 

4. GREEN CORRESPONDENTS AND SOURCES 

Having constructed the 5-modular irreducible representations of 2F4(2)' in 
the principal block, we are now interested in their Green correspondents and 
sources. For definitions and proofs from modular representation theory, the 
reader is referred again to the book of Landrock [5]; the programs are described 
in Schneider [9]. 

The first question we have to answer is the question of vertices. But the 
Sylow-5-subgroup S of 2F4(2)' is elementary abelian of order 25, and by a 
result of Knorr (Landrock [5, p. 244]) we get 

Theorem 4.1. All irreducible modules of 2F4(2)' in the principal block have vertex 
S. 

Since we chose our generators for 2F4(2)' in an elegant way, we have no 
difficulties to restrict our modules to the Sylow-5-normalizer N. From theory 
we know that for all modules M in question the restriction to N decomposes 
as M tN= f(M) MI ? Mr., with r > 0, where f(M) is the Green 
correspondent of M and has vertex N again. The vertices of the modules Mi 
are of the form Sg n N, g 0 N. Since S is a Sylow-5-subgroup of 2F4(2)', 
every 5-element in Sg n N would be contained in S, contradicting the trivial 
intersection property. But a module has vertex { 1 } if and only if it is projective. 
So all the Mi are projective. In particular, their dimensions are divisible by 
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25, whereas the dimension of f(M) cannot be divided by 25, since dim(M) 
is not divisible by 25. This will be of great help when we work out the Green 
correspondents. For this purpose we use the CAYLEY system again, together 
with programs of Schneider, for the calculation of endomorphism rings. After 
the construction of the Green correspondents we will be interested in their 
socle series. To get these, we need a complete list of the 5-modular irreducible 
representations of the Sylow-5-normalizer N 5 4A4. This is fairly easy, and 
N turns out to have 14 such modules, namely 

I-11a 1 a1b 1 *2 *2 *2 2* 3 I, a I5 b a' a b' b c c b' 

where I denotes the trivial module and *, as usual, the dual one. With this 
information and some other programs of Schneider, the socle series of a given 
module can be computed. 

Applying these methods, we get the following results. 

Theorem 4.2. The Green correspondents of the modules 26 and 26* are 

f(26) = 1l, f(26*) = la. 

Proof. The computation of the endomorphism ring yields a so-called Fitting- 
element, which gives a decomposition 

26tN= 1a*M, 

where dim(M) = 25, so M has to be projective and f(26) = la It can be 
shown that M = H1 , the projective indecomposable module with la in the 
socle. From duality, the second statement follows. 5 

Corollary 4.3. The decomposition 

26 0 26 = 325 ? 3510 
is the direct sum of two indecomposable modules. 
Proof. Since 325 is projective indecomposable, there is nothing to show. Now 
look at 3510 and write it as 

3510=ml r 

for some r > 1, where the Mi are indecomposable. Restricting the tensor 
product to N yields 

(26 X 26) lN = 325 lN M1l N Mr l N 
By looking at the decomposition matrix, we see that none of the Mi can be 
projective. So each of the Mi tN has at least one nonprojective direct summand 
N1, and we get 

(26 X 26) tN = N1 ? . Nr ? {some other summands} ? {projectives}. 
On the other hand, we have 

(26 0 26) 1N 26 1N 0 26 AN = (1a 'a 0 (1a O ia) 

= lb ? {projectives}. 
So r = 1, and 35 1 0 is indecomposable with f (35 1 0) =1 b [ 
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Theorem 4.4. The modules 27 and 27* are absolutely indecomposable when 
restricted to N, so their Green correspondents are 

f(27) = 27 IN, f(27*) = 27* IN 

They have the following socle series: 

1 3b 
2a 2b 2* 

a b~~~~1a l Ca 
3b b la la a 

f(27)= 2 2 2, f(27)= 2 2 

la la 3a b 
2* 2c 2a 2a 

3b 1 3b 

Proof. First we compute the endomorphism ring of 27 IN, and it can be shown 
that it has no nontrivial idempotents, so 27 IN is indecomposable. With the 
programs of Schneider it is no problem to prove the stated socle series for 
f(27). The result for f(27*) follows in the same way. 5 

Remark 4.5. As in Corollary 4.3, it follows that the tensor products 26?27 and 
26027* are indecomposable, because the products of the Green correspondents 
f(26) X f(27) and f(26) X f(27*) are indecomposable. 

Theorem 4.6. The module 78 has a 28-dimensional Green correspondent. Its 
socle series is 

2* 

2a 

78tN 28e 50 

2a b 2c 

f(7 8) = lb *l 3b 
2b 2* 

I 3a 

a a 

Proof. As in the proof of Theorem 4. 1, we compute the endomorphism ring 
and get a decomposition 

78 IN = 28 ED 50, 

where the second module has to be projective. Further calculations prove the 
indecomposability of the first one, and we get the socle series as in the proof of 
Theorem 4.4. 0 

In the same way, but with more and more expensive computer work, we get 
the following result. 
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Theorem 4.7. The modules 109 and 109' have the following Green correspon- 
dents: 

1b 1* 
lb lb 

f(109) = 3a, f(109') = 3a 
2* 2C 

lb lb 

For the CAYLEY version of the endomorphism ring program, a dimension 
of 300 seems to be the limit. So we have to proceed differently in the other 
cases; but first we want to work out the sources for the modules of dimension 
up to 109. 

For the question of sources, we have to restrict our modules further down to 
S. This is no problem, because we know generators s and t for S as words 
in the generators u and v for N, and we can concentrate on the restriction 
of the Green correspondents to S. We can use the same methods as above 
and prove the indecomposability of these restrictions in all cases. Since S is 
a 5-group, it has only one irreducible representation, namely the trivial one I, 
and the socle series of an S-module can be given as a sequence (s1, S2' ... . sr) 
of integers, where si is the multiplicity of I as a direct summand in the ith 
socle layer of the module. 

Theorem 4.8. For the modules 26, 26*, 27, 27*, 78, 109, and 109' the re- 
striction of the Green correspondent to S is indecomposable, hence equal to the 
source, and the socle series of the sources are given by 

socser(src(26)) = (1), 

socser(src(26*)) = (1), 

socser(src(27)) = (3, 4, 5, 6, 6, 2, 1), 

socser(src(27*)) = (4, 4, 3, 4, 5, 4, 3), 

socser(src(78))= (4, 4, 4, 5, 6, 3, 2), 

socser(src(l09)) = (1, 2, 3, 2, 1), 

socser(src(109')) = (1 2, 3, 2, 1). 

Now we are left with three pairs of modules (351, 351*), (460, 460'), and 
(593, 593'). Let M be one of these modules. By Mackey decomposition we 
know that 

r 

src(M) 1tNs = e(src(M) X xi) 
1=1 

is the direct sum of conjugates of src(M), not necessarily different, where 
x). , Xr E N. But the Green correspondent f(M) is a direct summand 
of the induced module src(M) tN, so the restriction of M to S decomposes 
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as 

M IS= (M IN) IS = (f(M) iD projectiless}) Is 
k 

= i3(src(M) ? yj) D {projectives}, 
j=1 

and the dimension of f (M) is equal to the dimension of the nonprojective part 
of M S. 

With this information we proceed in the following way: 

(i) Restrict M to S and compute the socle series of M IS. 
(ii) Look at the highest socle layer of M Is to get the exact number of 

projective summands of M IS. 
(iii) Use the socle series of the projective indecomposable module of S to 

deduce the socle series of f(M) IS, the nonprojective part of M IS. 
(iv) Compute the restriction M IN and its socle series. 
(v) Use the socle series of all the projective indecomposable modules of 

N and the information about dim(f(M)) and the dimension of the 
projective part of M IN to deduce the socle series of f (M) . 

This method enables us to state the socle series of some Green correspondents 
without their explicit construction. 

What is left is the question of the sources of these modules. We know that 
f(M) IS is the direct sum of conjugates of src(M) and every conjugate has 
the same socle series. Therefore, f(M) Is can only decompose into more than 
one direct summand, if for every socle layer of f(M) IS the multiplicity of 
the trivial representation I is divisible by the same integer m. If this is not 
the case, f(M) Is is indecomposable, hence equal to the source src(M). This 
will answer our questions for the next two pairs of modules, and we get the 
following results. 

Theorem 4.9. The Green correspondents and sources of 351 and 351 * are 76- 
dimensional. Their socle series are given by 

3a 

f(351)= 2* 2* 22 22* 
2a b 2c 

I b lb b 3b 

f(351) = a 2a b * b b 2C C 2CX 
1 la la 3a 3a a 3 

2a 2a 2* 2 2 2 
r s 4 ~~* 3 3 
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2a 2b c 

I b lb b 3b 
2a 2a 2b 2b 2c* 2* 

351 l a a a a a 
f(351)= 2 2a 2* 2 2 2 

I b lb b 3b 
2* 2 2* a b 
2* 2c 3a 

socser(src(351)) = (6, 9, 12, 15, 16, 9, 6, 3), 
socser(src(351*)) = (7, 6, 9, 12, 15, 12, 9, 6). 

Theorem 4.10. The modules 593 and 593' have thefollowing Green correspon- 
dents and sources: 

3a ~~~~~~3a 
2a 2; 2a 2 

f(593) = I 3b f(593) =I 3b 
2* 22* 2* a b a c 

3a sa 

socser(src(593)) = (3, 4, 4, 4, 3). 

socser(src(593 )) = (3, 4, 4, 4,5 3). 

The above method fails for the restriction f(460) ts, because its socle series 
is (4, 8, 12, 12, 12, 8, 4), so all parts are divisible by 4. But we are able to 
split off all projective indecomposable summands of 460 ts; there are exactly 
16 of them, obtained by the CAYLEY system, and so we can construct the 
restriction f(460) ts, a module of dimension 60. Therefore, it is no prob- 
lem to use the endomorphism ring program to decompose this module into 
indecomposable summands, and we finish with the last result about the Green 
correspondents and sources of 460 and 460'. 

Theorem 4.11. The Green correspondents of the modules 460 and 460' have 
dimension 60 and the following socle series: 

2a 2b 

1 la 3a 3a 
2a 2a 2b 2b 2C 2C 

f(460) =I lb lb 3b 3b 3b' 

2a 2a 2b 2b 2C C 

1 1 a 3a 3a 1 a a a 
2a 2* Xa Lb 
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2* 2* 2a 2C 

1 1* a a 3a 
2a 2a 2 2b 2C 2 

f(460')= I 1b 1b 3b 3b 3b 

2a 2a 2b 2b 2C 2C 

1 1a 3a 3a 
2a 2c 

The sources have dimension 15, and their socle series are 

socser(src(460)) = (1, 2, 3, 3, 3, 2, 1), 

socser(src(460')) = (1, 2, 3, 3, 3, 2, 1). 

All the calculations in the last three sections have been done on an IBM RT 
6150 at the University of Essen. 

APPENDIX 

The following matrices generate a 26-dimensional representation of 2F4(2)' 
over GF(25). For simplicity, only the exponents of a primitive element co of 
GF(25) have been printed, where co is a root of the polynomial X2 + X + 2 
over GF(5). 

Thus: . means 0, 0 means cow0 = 1, i means co for 1 < i < 23. 

A= 3 114 3 16 10 5 1 7 6 617 19 1 0 5 10 . .22 18 17 9 9 
0 412 5 7 71721 320 8 13 9 7 6 12 1223 23 1122 210 . 19 13 

22 19 16 8 12 3 10 11 19 23 13 2 19 1 17 13 12 18 7 9 20 10 19 5 22 16 
17 11 12 22 18 11 8 10 7 16 17 19 2 15 17 0 2 13 22 8 19 1 . 2 3 16 
0 110 20 22 22 16 22 12 19 17 914 817 0 3 14 10 9 23 7 4 9 3 15 

20 23 813 17 822 23 16 121 313 11 18 3 6 4 4 0 14 1 0 6 4 7 
16 23 13 12 23 17 8 5 018 18 413 . 8 16 16 3 8 23 22 9 7 6 16 2 
17 . 14 18 21 11 14 10 15 19 13 2 19 13 22 18 23 21 23 9 13 8 14 13 20 1 
317 14 20 23 1 816 14 9 . 6 4 810 12 20 22 22 10 7 114 17 15 6 

15 2 11 2 1 17 7 1 13 9 3 18 15 22 . 19 6 2 9 16 8 19 12 21 . 2 
15 21 16 12 20 . 5 2 919 15 21 6 610 4 17 12 19 20 22 18 21 8 8 7 
18 6 823 14 12 . 2 819 23 17 6 12 10 12 8 21 11 0 18 15 312 12 15 
915 .19 18 420 3 5 718 1 . 18 0 6 . 18 0 0 . 12 . 

11 9 9 6 10 9 21 11 23 11 22 6 0 12 18 . 12 . . 0 12 12 12 0 12 0 
10 22 15 7 17 22 7 6 9 16 12 11. 18 12 0 . 12 0 . . . 0 . 0 
423 3 1 7 819 21 13 19 17 230 012 212 0 .0 12 .. 0 .0 

16 8 310 2 17 9 8 19 10 21 12 18 .. 6 6 18 
23 20 .23 12 15 220 18 17 22 20 6 6 0 6 18 18 . . 0 0 . 0 
13 9 5 1 17 17 4 5 14 13 2 15 12 12 12 12 6 6 18 18 6 6 .18 . 18 
6 6 7 11 0 3 3 3 10 7 10 3 0 . 6 18 18 18 6 18 . 18 6 18 6 

11 11 7 3 15 15 13 15 13 6 19 19 18 . . 18 0 0 18 . 18 6 . 6 . 6 
10 6 .8 16 23 5 8 118 7 166 . 12 6 18 12 18 18 ..18 . 18. 
23 14 0 5 16 13 3 7 18 23 6 4 6 18 0 12 6 12 0 0 18 012 12 12 12 
18 16 21 13 8 7 423 3 0 13 612 0 18 6 12 612 6 0 12 018 0 18 
512 18 22 20 15 14 16 .12 1 518 612 0 18 012 12 6 12 0 0 0 0 
318 6 4 22 3 15 3 3 3 8 9 0 12 6 18 0 18 0 18 12 012 6 12 6 
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13 8 
.16 

..16 
* . ..16 

.8 
8 

0 61 5 123 
5 2 118 23 

. s s s s s 15 0 5 11 12 12 
2 816 . 811 

. s s s s s 11 18 13 15 1 21 

. s s s s w 22 123 . 010 
. s s s s s s12 0 
.~~~~~~1 2 

0 

.12~~~~~~~~~~~~~~~ 
. @ s s @ @ @ @ @ @ @ @ 12 . 0 0 12 

0 .12 12 0 
0 1 

2~~ 
0 

0 

19 19 18 8 3 3 . 9 91 16 61 s 0 8 23 1621 20 11 1 108ss s 

41 1 4 32 8 1 71 12 13 41 17 62 12 11 1 4 9 .11 4 10 

C = t4 2523 281 714 t23 123 t2 22 5101 7 920 16 0 92 2 3 61 2 12 22t 
23 8 18 0 .23 22 23 62 17 t4 6tS 8 8 412 2 8 12 t9 9 1t42t 226 
6 142 3 3 4 19 5 12 tO 60 20 16 22 1 12 t1t6 8 12 23 6 t32 210 

t9 14 13 4 t282 32 16 919 13t6 1 tO 682 1621 20 3 12 3 14 1O 2 
17 20 91842 4 06 215 42 20 12 t6 2 06 18 14 7 2t t 20 19 21 222 t 91 
431 4 3 t8 12 7 16 1403 139 13 192Z 18 03 81 6 t92 0172 5 
20 12 8 3 8 912 4 23110 17 6 1 19 13 .8 4 6 14 5 22 9 0 14 12 23 136 821 
32 16 7218 135 22 5 0312 22 14 18 15 612 14 0231 23 21 2 6 126 
419 14 3 20 3 12 216 22 1213 1 4t 1762 0 12 t1 14 9 6 1 4t 
17 20 3 2 21417 10 81 98 10 15 7 Z2 . 19 3 t 1 202 tO 21 6 3 12 

21 8202 21 712023 1315 22 7 0 6 62 12 88 9212 6 1 1 
015 2 17 9 12219 9 19 4 3418 9 8 2 160 68 23 48 . 1 61 161 

18 812 13 42 20 31 614 16 13 216 0 0 6 02 6 12 , 6 . . 2 0 01 

3 .21 16214 22 12 4 4 4 712 22 3 6 8 012 0 18 6 6 . 18 . 6 6 

37 021 68 0142 13 4 7112 
6 12 0 

182 6 61 . .18 618 6 . 

. 11 21 801 1 2661 861 
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D = 0 18 3 . 12 6 3 6 13 22 14 22 12 0 11 2 2 10 15 13 5 22 17 3 12 
2 15 19 91 21 21 7 19 23 16 19 1 8 16 1 21 4 3 5 18 11 11 4 11 9 0 
8 15 2 2 10 0 5 13 . 4 12 4 22 6 9 15 16 13 3 23 11 8 3 13 6 19 

12 . 12 214 318 14 20 5 9 3 1 14 10 21 417 14 17 21 15 5 516 22 
23 14 21 23 23 14 22 11 10 1 4 22 11 8 19 9 3 23 11 14 19 2 20 11 20 17 
17 10 13 11 6 3 4 7 23 3 13 5 9 8 21 11 15 6 2 . 8 5 0 4 20 5 
20 14 1 . 6 19 0 0 10 12 16 3 7 922 8 2 915 620 5 1 620 21 

. 13 9 2 17 20 10 0 20 3 8 15 9 10 11 23 1 3 2 22 10 1 18 21 22 11 
4 4 9 3 7 7 6 11 . 19 21 6 2 11 . 5 5 7 11 22 7 18 5 8 9 1 
0 18 .14 7 21 19 5 23 23 19 219 18 9 1 10 14 3 22 16 12 15 17 18 1 

23 8 18 1515 15 17 5 21 12 14 2 0 414 7 10 . 4 13 12 3 17 20 17 0 
2 15 4 7 0 9 14 18 4 21 21 11 16 23 17 11 12 4 21 10 3 19 3 5 . 6 

20 2 . 2 19 2 16 19 2 11 21 1 16 19 16 14 20 11 22 8 13 20 22 10 
5 4 22 11 12 18 14 16 5 19 23 614 22 11 13 11 310 9 8 13 10 10 8 20 
5 13 713 7 815 5 614 8 515 314 16 120 0 13 0 8 22 0 . 22 
1 0 23 6 3 13 4 12 17 17 15 10 5 8 2 9 . 6 3 6 t1 14 3 3 14 
0 . 16 13 1 2 23 23 11 8 18 23 13 2 9 14 8 7 18 16 18 14 18 23 5 23 

10 12 4 11 20 2 17 17 20 8 12 7 10 1 7 10 22 15 5 7 23 15 12 5 5 12 
17 17 18 16 7 13 13 3 12 0 4 519 10 20 16 712 23 923 12 4 0 6 6 
9 10 15 014 20 7 2 21 0 13 910 3 7 2 913 19 15 22 14 21 018 0 
3 10 21 21 11 1 23 20 21 14 20 9 4 16 4 23 13 8 11 0 11 21 18 20 1 21 

15 19 4 020 16 9 21 17 15 13 10 7 19 6 2 16 13 22 15 22 0 20 18 18 12 
.5 019.. 5 20 12 5 5 16 20 823 5 710 2 2 4 22 15 422 19 
7 18 16 13 9 5 12 1 0 8 2 16 11 0 18 19 11 7 16 3 16 14 3 16 13 
1 7 17 18 16 722 . .22 . 713 23 910 3 016 16 13 8 14 316 13 

11 13 16 0 14 18 6 3 12 9 12 22 3 15 22 21 9 20 19 4 15 4 12 1 4 1 
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